I. INTRODUCTION

Since the late 1970s, conjugated polymers have been the focus of intense research that has resulted in the synthesis of these polymers having conductivities ranging from the metallic to the insulating regime. The reversible doping and dedoping effects are unique to these systems wherein the conductivity (σ) of some polymers can be tuned to any desirable value in the range of $10^{-10} < \sigma < 10^0$ S/cm. While the initial focus was to make these materials have conductivities similar to traditional metals, much of the work has also been aimed at exploiting their semiconducting properties. The delocalized π electrons along the polymer backbone are responsible for much of the electronic characteristics exhibited. The inherent material strength together with their electronic properties have made π-conjugated polymers very promising candidates for use in electronic applications where light weight and flexibility are needed. Semiconducting polymers cannot at present replace inorganic semiconductors based on silicon, nevertheless they are amenable to cheap processing techniques and in large area flexible electronic displays.

Regio-regular poly(3-hexylthiophene) (RRP3HT) is one of the widely studied organic semiconducting polymers that has a high mobility and on/off ratio when used in a field effect transistor (FET) configuration, two important device parameters that make it viable for use in practical circuits. This commercially available polymer is also very soluble in common organic solvents and is easily processed to form uniform thin films, making it an attractive candidate for study in research laboratories and in industry. Technologically, the most important polymer based device fabricated and studied is the FET since it forms the basic building block in logic circuits and switches for displays. Figure 1(a) shows a schematic cross-sectional view of the basic FET using an insulating gate dielectric layer over a doped silicon substrate. Two metal leads patterned over the insulator serve as the source and drain terminals of the device while the doped silicon serves as the global gate electrode. To complete the field effect transistor, an organic semiconducting channel is placed between the source and drain terminals either via electrochemical deposition, vacuum deposition, or spin coating of the semiconductor material, resulting in a two dimensional thin film morphology, or via electrospinning resulting in a one dimensional nanofibrous morphology. By connecting individual FETs in tandem several types of logic gates can be fabricated and tested.

In this paper a modified FET architecture has been designed that uses a split gate configuration as shown in the schematic drawing of Fig. 1(b) so that each gate can be independently addressed. We show that a spin coated RRP3HT single channel split gate FET functions as a dual input logic AND gate with an order of magnitude higher mobility, higher...
The spacing between the electrodes was 0.845 mm. Electrodes a, b, and c lie on the top of the substrate while electrodes d and e are embedded inside the silicon nitride gate dielectric. The silicon nitride was etched to gain access to the gate electrodes. External contacts were made via the use of silver paint as seen in the right side image. Electrodes a and b served as the drain and source electrodes, respectively, while d and e were the two gate electrodes. Terminal c was not used. The width of the electrode “fingers” were about 20 μm and their lengths were about 600 μm. The spacing between the electrodes was ~4 μm.

on/off ratio, and reduced hysteresis as compared with a similar device prepared with pentacene.18 Since numerous logic circuits that require multiple inputs are widely used in devices such as comparators, the fact that this functionality can be achieved using a single transistor, rather than cascading a series of single input transistors, could reduce the number of transistors required in many digital applications, thereby making the circuits more compact. We correlate the measured electrical performance of this device with film morphology and substrate design.

II. EXPERIMENT

A. Substrate fabrication

The device substrates were fabricated as follows: The starting wafer was n-type doped Si (10 Ω cm), with a 200 nm thick thermally grown oxide layer. First, the gate metals, comprised of 20 nm Cr/100 nm Au, were vacuum deposited in a thermal evaporator and patterned using conventional photolithographic and lift-off techniques. Next, a 100 nm thick silicon nitride film, Si3N4, was deposited over this using chemical vapor deposition (CVD). The mean surface roughness after the CVD grown silicon nitride is highly conformal to the substrate. The mean surface roughness of the silicon nitride dielectric was 1.2 nm.

FIG. 2. (Color) (Top view) Optical images of the device substrate without (left) and with (right) the RRP3HT spin coated layer. The film thickness measured with a profilometer was ~50 nm. Electrodes a, b, and c lie on the top of the substrate while electrodes d and e are embedded inside the silicon nitride gate dielectric. The silicon nitride was etched to gain access to the gate electrodes. External contacts were made via the use of silver paint as seen in the right side image. Electrodes a and b served as the drain and source electrodes, respectively, while d and e were the two gate electrodes. Terminal c was not used. The width of the electrode “fingers” were about 20 μm and their lengths were about 600 μm. The spacing between the electrodes was ~4 μm. Figure 2(b) shows the image of a similar substrate after spin coating it with a RRP3HT thin film. Due to the complex nature of the substrate fabrication process, the substrate planarity was checked by using an atomic force microscope (AFM). Figure 3 shows an AFM image of a representative midsection of the substrate prior to the semiconductor deposition, together with a section analysis of the image. As seen in Fig. 3, the CVD grown silicon nitride is highly conformal to the substrate topography with sharp edges at the boundaries of the electrodes. The vertical distance between the top of the silicon nitride/gate and the space between the gate and source terminals as indicated by the arrows along the line scan in Fig. 3 is approximately 125 nm. The mean surface roughness of the silicon nitride dielectric deposited on top of the gate metal was 1.2 nm. This implies that the substrate surface between the source and drain electrodes is not planar as shown in the schematic representation of Fig. 1(b). AFM scans were taken in tapping mode using a Digital Instruments NanoScope IIIa atomic force microscope.

B. Thin film preparation

Regio-regular P3HT and chloroform was purchased from Aldrich and used as received. A 0.5 wt % of RRP3HT was prepared in chloroform and then filtered through a 0.20 μm PTFE syringe filter. The substrate with prepatterned leads as described in the previous section was spun in air to 3000 rpm and a drop of the above solution placed over it. The spinning continued for 40 s and an optically uniform pink film of thickness approximately 50 nm covered the substrate as seen in Fig. 2(b). Due to the topography, the thickness of the polymer film can be expected to vary at the top edges and vertical edges of the gate/gate dielectric surface. AFM images of the substrate after RRP3HT deposition were qualitatively similar to Fig. 3, implying that the polymer conformed to the substrate. The mean surface roughness after RRP3HT deposition was 1.3 nm. The device was then placed in a conventional oven at 50 °C for 15 min after which electrical connections to the contact pads were made with silver paint and gold wire. Once contacted, the device was placed in a vacuum at 5 × 10−4 Torr for electrical characterization.
FIG. 4. Drain-source current vs drain-source voltage \((I_{DS}, V_{DS}) \) characteristics of the split gate field effect transistor, where the gate-source voltages \((V_{GS1} \text{ and } V_{GS2}) \) are as indicated.

C. Electrical characterization

The electrical drain-source current versus drain-source voltage \((I_{DS}, V_{DS}) \) characteristics of the device were measured in vacuum using a Keithley model 6517A electrometer at 296 K. Gate voltages were applied with a Keithley model 6487 picoammeter/voltage source. Measurements were taken with the source electrode grounded; hence gate 1, gate 2, and drain voltages are referenced to the source. For the logic AND circuit demonstration, a Stanford Research Systems model DS 335 function generator provided the gate bias, a Tektronix model TD 3012B digital oscilloscope was used to record the input gate bias, and a second Keithley model 6517A electrometer was used to record the output voltage that was measured across a 10 MΩ load resistor.

III. RESULTS

The drain-source current \((I_{DS}) \) versus drain-source voltage \((V_{DS}) \) characteristics of the split gate transistor are shown in Fig. 4 for various combinations of gate voltages \(V_{GS1} \) and \(V_{GS2} \) which correspond to the voltages applied to the two buried gate electrodes lying in between the drain and source electrodes, respectively, as seen in Fig. 2. For each scan, the bias on the gate electrodes was either 0 or −10 V, thus permitting four possible combinations of gate voltages. As seen from this figure, at \(V_{DS} = −20 \text{ V} \) the current is significantly higher only when both gate electrodes are biased simultaneously with −10 V. For the other combinations there was a smaller current primarily due to the intrinsic conductivity of RRP3HT and perhaps due to the unintentional doping in air. Similar results were also seen for other values of common gate bias voltages, viz., \(I_{DS} \) was higher only when both gates were biased high simultaneously. Thus this device has characteristics similar to a dual input logic AND gate. Due to the uneven substrate topography, especially at the step edges of the gate electrodes, the charge mobility in this device is adversely affected, which in turn leads to inferior device characteristics. From Fig. 4 we can estimate this value from the linear portion of the curves corresponding to the common gate voltages of 0 and −10 V. The device transconductance \((g_m) \) is given by

\[
g_m = \frac{\partial I_{DS}}{\partial V_{GS}} \bigg|_{V_{DS}=\text{const}}. \tag{1}
\]

Treating the transistor as a single gate structure, with \(V_{GS1} = V_{GS2} = −10 \text{ V} \) and at \(V_{DS} = −1.0 \text{ V} \), \(g_m \) is calculated to be \(1.60 \times 10^{-11} \text{ S} \). The carrier mobility is then determined using

\[
\mu = \frac{g_m L}{Z C_i V_D}, \tag{2}
\]

where \(L \) is the channel length (40 µm), \(Z \) is the channel width (600 µm), and \(C_i \) is the capacitance per unit area of the 100 nm thick silicon nitride layer (6.63 × 10^{-8} \text{ F/cm}^2 \text{ assuming a dielectric constant of 7.5}). In the linear region, the mobility is calculated to be \(1.5 \times 10^{-5} \text{ cm}^2/\text{V s} \). The typical mobility of thin film RRP3HT deposited on planar substrates falls in the range of \(10^{-4} – 10^{-1} \text{ cm}^2/\text{V s} \). The low observed mobility is a result of the poor efficiency in charge transport due in part to the rapid evaporation of the solvent during film preparation and due to substrate nonplanarity. The substrate nonplanarity could lead to associated defects, charge traps, and self-localization of charge that act as barriers to charge transport.

In order to further characterize the device, a series of measurements having both gates biased with a common voltage has been done. Figure 5 shows the characteristic curves of this experiment. At low drain-source voltages the channel current is linear but at voltages comparable to and larger than the gate-source bias, the drain-source current begins to saturate, which is typical for polymer based field effect transistors. True saturation is not seen in this particular device, although it has been seen in other RRP3HT devices with split gate electrode configuration prepared under similar conditions. One reason could be the microscopic nature of the polymer contact with the gate dielectric and the conductivity of the polymer due to unintentional doping of the polymer while handled in air, which has been shown to have a detrimental effect on the Fet behavior in RRP3HT. As seen in Fig. 5, the increase in \(I_{DS} \) for fixed \(V_{DS} \) upon increasing the negative gate bias demonstrates that the device operates as a Fet and that the majority carriers are holes. At applied gate biases of −14 V on both gates, the on/off ratio of this device was calculated to be ~30. The conductivity of the film in vacuum was found to be \(4 \times 10^{-8} \text{ S/cm} \) under no gate bias.
conditions, indicating some doping. The field effect charge mobility of this device was also calculated from the saturated section of the \(I-V\) curves using the standard FET equation

\[
I_{DS} = \frac{\mu Z C_i}{2L} (V_{GS} - V_{th})^2, \tag{3}
\]

where the various parameters have been defined earlier, and \(V_{th}\) represents the threshold voltage at which the conduction channel begins to be formed. Figure 6 shows the variation in the \(I_{DS}\) vs \(V_{GS}\) (with both the gates biased simultaneously to the same value) at a fixed drain-source voltage of −20 V. A corresponding plot of \(I_{DS}^2\) vs \(V_{GS}\) is also shown in Fig. 6 from which we extract \(V_{th} = −8\) V and the mobility as \(5 \times 10^{-4}\) cm²/V s. Hysteresis effects are minimal although not totally absent as can be seen in Fig. 6 as the device was measured in vacuum and the shift in the threshold voltage was 1 V.

One application of the split gate architecture for logic circuitry is demonstrated via a two-input logic AND circuit, shown schematically in the inset to Fig. 7. To create the device, a 10 MΩ load resistor was connected between the ground and the transistor source terminal, with the two gate terminals serving as the inputs and the output (\(V_R\)) was taken at the source terminal across the load resistor. A low frequency (0.01 Hz) square wave signal served as the input gate bias. For all combinations of \(V_{GS1}\) and \(V_{GS2}\) except \(V_{GS1} = V_{GS2} = −10\) V, the transistor was in the resistive “off” state, and −0.3 mV < \(V_R\) < 0 V. For \(V_{GS1} = V_{GS2} = −10\) V, the transistor was in the more conductive “on” state, causing a greater portion of the voltage drop to occur across the load resistor. As a result, \(V_R\) is a more negative value (−2.0 < \(V_R\) < −1.7 mV). The ability of the device to operate as an AND logic circuit is demonstrated in Fig. 7. The upper graph shows \(V_{GS1}\) and \(V_{GS2}\) as a function of time while the lower graph shows the corresponding change in the output voltage \(V_R\) as a function of time for the four possible combinations of \(V_{GS1}\) and \(V_{GS2}\) = 0 or −10 V. Larger outputs were observed only when both gates were simultaneously biased “high.” Overshoots and undershoots in \(I_{DS}\) were observed at the rising and falling edges of the gate bias due to the capacitive effects associated with sudden changes in the input signals. For practical applications, the magnitude of \(V_R\) in the transistor on (off) state must be increased (decreased), i.e., the dynamic ratio \(I_{on}/I_{off}\) must be increased. This can be achieved via the use of purified starting materials, pretreated substrates to make them more hydrophobic and hence have better contact with the semiconductor (reduced charge trapping), and substrates that possess more planar channel topologies, either by embedding the gate electrodes deeper into the gate dielectric prior to CVD growth of the upper dielectric or by using a thicker CVD grown gate dielectric that will minimize step coverage problems. As a simple model, our results can be explained by treating the device as consisting of two gate voltage controlled switches connected in series and which lead to the logical AND operation via the on/off operation of these switches. The phenomena described in this paper can also be extended to other types of logic devices. For example, connecting the load resistor at the drain terminal and tapping the output between the drain terminal and ground is predicted to have the effect of producing NAND logic operation for the corresponding input gate biases.

IV. SUMMARY

A split gate field effect transistor with a thin film of RRP3HT as the active semiconducting layer was fabricated and characterized. This device was seen to work as a dual input logic AND gate and was operated by applying either 0 or −10 V to each of the gate electrodes. When −10 V was simultaneously applied to both gates, the device was conductive, while any other combination of gate voltages rendered the device resistive. The AND circuit was formed by placing
a 10 MΩ resistor between the source terminal and ground. The device also worked as a field effect transistor with a dynamic ratio of ~ 30 and had a charge carrier mobility of 5×10^{-4} cm²/V s. These device parameters are expected to improve via the use of purified starting materials, pretreated substrates and more planar channel topography. A significant advantage of this device is that AND logic devices with multiple inputs can be built using a single RRP3HT channel with multiple gates.

ACKNOWLEDGMENTS

This work was supported in part by NSF under Grant Nos. 0402766 and 0353730 and by the Petroleum Research Fund under Grant No. 38880-B7.